Surfing the Exponential (Synthetic Biology)

Synthetic Biology. I don’t think I’ve ever been as equally intrigued and frightened as much by anything in my life. I listened to Craig Venter at TED earlier this year describe how he was creating entirely new genetic life forms (not simply hybrid recombinants). My reaction was identical. Until we reasonably know the total risks of synthetic biology, I believe the potential dangers of widespread boutique gene creation will usually outweigh the benefits.

But it’s too late. The race is on. We may not recognize the power of the path we’re embarking upon until it is too late.

A must-read New Yorker article describes in detail:


A team from Pennsylvania State University, working with hair samples from two woolly mammoths “one of them sixty thousand years old and the other eighteen thousand” has tentatively figured out how to modify that DNA and place it inside an elephant’s egg. The mammoth could then be brought to term in an elephant mother. “There is little doubt that it would be fun to see a living, breathing woolly mammoth” a shaggy, elephantine creature with long curved tusks who reminds us more of a very large, cuddly stuffed animal than of a T. Rex.,  the Times editorialized soon after the discovery was announced. “We’re just not sure that it would be all that much fun for the mammoth.”

It is only a matter of time before domesticated biotechnology presents us with what Dyson described as an “œexplosion of diversity of new living creatures. . . . Designing genomes will be a personal thing, a new art form as creative as painting or sculpture. Few of the new creations will be masterpieces, but a great many will bring joy to their creators and variety to our fauna and flora.”

I asked Endy why he thought so many people seem to be repelled by the idea of constructing new forms of life. “Because it’s scary as hell,” he said. “It’s the coolest platform science has ever produced, but the questions it raises are the hardest to answer.” If you can sequence something properly and you possess the information for describing that organism “whether it’s a virus, a dinosaur, or a human being” you will eventually be able to construct an artificial version of it. That gives us an alternate path for propagating living organisms.

Moreover, how safe can it be to manipulate and create life? How likely are accidents that would unleash organisms onto a world that is not prepared for them? And will it be an easy technology for people bent on destruction to acquire? “We are talking about things that have never been done before,” Endy said. “If the society that powered this technology collapses in some way, we would go extinct pretty quickly. You wouldn’t have a chance to revert back to the farm or to the pre-farm. We would just be gone.”

“These are powerful choices. Think about what happens when you really can print the genome of your offspring. You could start with your own sequence, of course, and mash it up with your partner, or as many partners as you like. Because computers won’t care. And, if you wanted evolution, you can include random number generators.” That would have the effect of introducing the element of chance into synthetic design.

Although Endy speaks with passion about the biological future, he acknowledges how little scientists know. “It is important to unpack some of the hype and expectation around what you can do with biotechnology as a manufacturing platform,” he said. “We have not scratched the surface. But how far will we be able to go? That question needs to be discussed openly, because you can’t address issues of risk and society unless you have an answer.”

“It’s very hard for me to have a conversation about these issues, because people adopt incredibly defensive postures,” Endy continued. “The scientists on one side and civil-society organizations on the other. And, to be fair to those groups, science has often proceeded by skipping the dialogue. But some environmental groups will say, Let’s not permit any of this work to get out of a laboratory until we are sure it is all safe. And as a practical matter that is not the way science works. We can’t come back decades later with an answer. We need to develop solutions by doing them. The potential is great enough, I believe, to convince people it’s worth the risk.”

“Do you know how we study aging?” Endy continued. “The tools we use today are almost akin to cutting a tree in half and counting the rings. But if the cells had a memory we could count properly. Every time a cell divides, just move the counter by one. Maybe that will let me see them changing with a precision nobody can have today. Then I could give people controllers to start retooling those cells. Or we could say, Wow, this cell has divided two hundred times, it’s obviously lost control of itself and become cancer. Kill it. That lets us think about new therapies for all kinds of diseases.”

We are surfing an exponential now, and, even for people who pay attention, surfing an exponential is a really tricky thing to do. And when the exponential you are surfing has the capacity to impact the world in such a fundamental way, in ways we have never before considered, how do you even talk about that? “

This is open-source biology, where intellectual property is shared. What’s available to idealistic students, of course, would also be available to terrorists. Any number of blogs offer advice about everything from how to preserve proteins to the best methods for desalting DNA. Openness like that can be frightening, and there have been calls for tighter control of the technology. Carlson, among many others, believes that strict regulations are unlikely to succeed. Several years ago, with very few tools other than a credit card, he opened his own biotechnology company, Biodesic, in the garage of his Seattle home “a biological version of the do-it-yourself movement that gave birth to so many computer companies, including Apple.”

“Strict regulation doesn’t accomplish its goals,” Carlson said. “It’s not an exact analogy, but look at Prohibition. What happened when government restricted the production and sale of alcohol? Crime rose dramatically. It became organized and powerful. Legitimate manufacturers could not sell alcohol, but it was easy to make in a garage or a warehouse.”

By 2002, the U.S. government intensified its effort to curtail the sale and production of methamphetamine. Previously, the drug had been manufactured in many mom-and-pop labs throughout the country. Today, production has been professionalized and centralized, and the Drug Enforcement Administration says that less is known about methamphetamine production than before. “The black market is getting blacker,” Carlson said. “Crystal-meth use is still rising, and all this despite restrictions.” Strict control would not necessarily insure the same fate for synthetic biology, but it might.

Bill Joy, a founder of Sun Microsystems, has frequently called for restrictions on the use of technology. “It is even possible that self-replication may be more fundamental than we thought, and hence harder” or even impossible “to control,” he wrote in an essay for Wired called Why the Future Doesn’t Need Us.  “The only realistic alternative I see is relinquishment: to limit development of the technologies that are too dangerous, by limiting our pursuit of certain kinds of knowledge.”

Still, censoring the pursuit of knowledge has never really worked, in part because there are no parameters for society to decide who should have information and who should not. The opposite approach might give us better results: accelerate the development of technology and open it to more people and educate them to its purpose. Otherwise, if Carlson’s methamphetamine analogy proves accurate, power would flow directly into the hands of the people least likely to use it wisely.

For synthetic biology to accomplish any of its goals, we will also need an education system that encourages skepticism and the study of science. In 2007, students in Singapore, Japan, China, and Hong Kong (which was counted independently) all performed better on an international science exam than American students. The U.S. scores have remained essentially stagnant since 1995, the first year the exam was administered. Adults are even less scientifically literate. Early in 2009, the results of a California Academy of Sciences poll (conducted throughout the nation) revealed that only fifty-three per cent of American adults know how long it takes for the Earth to revolve around the sun, and a slightly larger number “fifty-nine per cent” are aware that dinosaurs and humans never lived at the same time.

The industrial age is drawing to a close, eventually to be replaced by an era of biological engineering. That won’t happen easily (or quickly), and it will never solve every problem we expect it to solve. But what worked for artemisinin can work for many of the products our species will need to survive. “We are going to start doing the same thing that we do with our pets, with bacteria,” the genomic futurist Juan Enriquez has said, describing our transition from a world that relied on machines to one that relies on biology. “A house pet is a domesticated parasite,” he noted. ” It is evolved to have an interaction with human beings. Same thing with corn” a crop that didn’t exist until we created it. “Same thing is going to start happening with energy,” he went on. “We are going to start domesticating bacteria to process stuff inside enclosed reactors to produce energy in a far more clean and efficient manner. This is just the beginning stage of being able to program life.”

Leave a Reply

Your email address will not be published. Required fields are marked *